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Flow separation can be observed (1) at  the leading edge of a spilling breaker 
or ' white-cap ', (2) at  the lower edge of a tidal bore or hydraulic jump and (3) 
upstream of an obstacle abutting a steady free-surface flow. At the point of flow 
separation there is a discontinuity in the slope of the free surface. The flow 
upstream of this point is relatively smooth; the flow downstream of the dis- 
continuity is turbulent. 

In this note, a local solution for the flow in the neighbourhood of the discon- 
tinuity is derived. The turbulence is represented by a constant eddy viscosity N ,  
and the tangential stress across the interface between the laminar and turbulent 
zones is expressed in terms of a drag coefficient C. It is shown that the inclinations 
of the free surface of the two sides of the discontinuity depend on C only, and are 
independent of N and g. As C increases from zero to large values, so the inclina- 
tion of the free surface in the turbulent zone increases from 10" 54' to 30". In the 
laminar zone the inclination of the free surface simultaneously decreases from 
10" 54' to 0", the densities in the two zones being assumed equal. 

Owing to the possible entrainment of air at the separation point, the effective 
density p' in the turbulent zone may be less than the density p in the laminar zone. 
When these densities are allowed to be different it is found that the possible 
flows are of two distinct types. Flows of the first type, called 'quasi-static', 
are contiguous to a state of rest. Flows of the second type, called 'dynamic', 
are contiguous with the frictional flows described above, for which p' = p. At 
a given positive value of C there exists generally only one quasi-static solution. 
There is also just one dynamic solution provided p'/p > 0.50012. On the other 
hand, if p'/p < 0.5 there may be either two or no dynamic flows, depending on the 
value of C; and when 0.5 c p'lp < 0.50012 there may be three such flows. 

The inclination of the free surface is studied as a function of C and p'/p. 

1. Introduction 
The breaking of surface waves has important dynamical consequences in the 

ocean, both in deep and in shallow water. In  deep water, white-caps may be 
responsible for a high proportion of wave energy dissipation (see Stewart & 
Grant 1962), and hence for the conversion of wave momentum to larger scales of 
motion. Thus ifD denotes the mean rate of energy dissipation per unit horizontal 
area, and if c is the phase velocity of the breakers, an amount of wave momentum 
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equal to D/c is available for conversion to larger scales of motion, including mean 
currents. 

The turbulence due to breaking waves is probably also the chief agent of 
vertical mixing and for vertical transfer of heat and momentum in the upper- 
most layers of the ocean, while the entrainment of air by breaking waves must 
influence the transfer of dissolved gases between atmosphere and ocean. 

Likewise in shallow water it is known that longshore currents, which transport 
large quantities of sand and sediment paralIel to  the coastline, are generated with- 
in the surf zone by waves striking the coast a t  an oblique angle (Galvin 1967). 
The mean tangential stress r exerted by the waves is equal to (D/c)  sin 8, where 
D and c have the same meanings as before and 8 denotes the angle of incidence 
(see Longuet-Higgins 1970a, b) .  Though most of the dissipation in the surf zone 
is due to breaking waves, neither the form of the breaking waves, nor the dis- 
tribution of turbulence with depth are well known. 

Indeed, while the theory of surface waves of small amplitude has been highly 
developed (see, for example, Lamb 1932) and much progress has been made 
with the theory of weakly nonlinear interactions (Phillips 1966), our know- 
ledge of breaking waves is surprisingly scanty. 

It was shown by Stokes (1880) that a steady progressive wave of limiting 
amplitude must have a sharp crest with a discontinuity of 60’ in surface slope. 
Using this criterion, the limiting form of waves in deep water was determined 
by Michell (1893) and in shallow water by McCowan (1894), Davies (1952) and 
others. Numerical calculations of unsteady waves have also been successfully 
carried out by, for example, Street (1972) up to the point of breaking. But 
little, if any work has been done on the analytical description of a gravity 
wave after i t  has broken. The reason is no doubt connected with the fact that 
such flows are essentially turbulent, and potential theory is no longer applicable 
to the whole flow. 

Laboratory studies of breaking waves in shallow water have been published 
by Mason (1952), Iverson (1952), Ippen & Kulin (1955), Divoky, Le MBhaut6 & 
Lin (1970), and others. Mason (1952) distinguished two types of breaking wave: 
on the one hand ‘plunging breakers’, in which the wave crest topples forwards 
and falls vioIently onto itself; and on the other hand ‘spilling breakers’, in 
which the free surface becomes unstable near the wave crest and forms a quasi- 
steady white-cap on the forward slope of the wave. Illustrations of these two types 
are given in figures 1 and 2 of Mason (1952). 

I n  contrast, a considerable amount of experimental work has been done on 
hydraulic ‘jumps ’ in channel flows; for a comprehensive review see Rajaratnam 
(1967). These are essentially shallow-water flows. The flow in the jump has been 
explored in its dependence on the Froude number. Evidently some experimental 
difficulties remain to be overcome, in particular those arising from the entrain- 
ment of air a t  the free surface. Quantitative measurements by Rajaratnam 
(1962) indicate that the mean density in a vertical section can fall as low as 
0.8 g/cm3, and possibly lower. 

It must be emphasized, however, that breakers are by no means a shallow- 
water phenomenon, as is shown by the presence of white-caps in deep water 
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FIGURE 1. Examples of flow separation. (a) A spilling breaker. (b)  The flow 
induced by an obstacle at  the surface of a steady stream. 

(Monahan 1971). Generally they seem to occur when the vertical acceleration 
approaches the limiting value i$g (Longuet-Higgins 1969a). It is also certain that 
the extreme shearing motion near the crests of large-scale waves will sometimes 
give rise to a shearing instability. 

In deep water there are at least two ways in which waves may attain their 
limiting amplitude. The first occurs when the frequency spectrum is narrow. Since 
the phase velocity of deep-water waves is twice that of their group velocity, 
the amplitude of waves will grow to a maximum and then decay as they pass 
through their wave envelope. Near the maximum amplitude they may break. 

The second mechanism applies when the shorter waves riding on the backs 
of longer waves are forced by the latter to steepen and break near the crests of 
the longer waves (Longuet-Higgins 1969b). 

In  deep water, white-caps appear generally to last for a shorter time than on 
gently sloping beaches, but from visual observation white-caps may be better 
classed as 'spilling ' than as 'plunging '. Some observations of white-caps are 
given in a recent note by Donelan, Longuet-Higgins & Turner (1972). 

The complete analytical description of breaking waves, and of hydraulic 
jumps, presents a challenging task. In  the present paper we do not attempt a 
complete description of either of these phenomena, but we suggest on the other 
hand a possible model for one local feature of such flows, namely the flow near the 
forward edge of a spilling breaker or hydraulic jump, where the turbulent flow 
meets the more tranquil water (see figure 1). In this region the flow is evidently 
turbulent, as elsewhere in the breaker. We suggest that it may be treated 
as a turbulent wedge with a certain eddy viscosity whose magnitude is deter- 
mined by conditions outside the local flow (see figure 2). Such a local solution 
is developed in the present paper. 

In  Q 2 we show that the only type of smooth irrotational flow which can sustain 
a discontinuity of surface gradient is one with an angle of 120" -in fact, a general- 
ization of the Stokes 120" angle flow (see figure 2). But to sustain this the fluid on 
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FIGURE 2 .  Co-ordinates and notation for the assumed flow. 

the left of the discontinuity must be at  rest, and the free surface on the left must 
be horizontal. There is no way to support a rise in water level on the left, except 
by frictional forces, or (in turbulent motion) by Reynolds stresses. 

We therefore assume (in 5 3) that the fluid on the left of the discontinuity is 
turbulent, and is dominated by Reynolds stresses. The latter are assumed to be 
represented by a coefficient N of eddy viscosity. The mean velocity in the turbu- 
lent zone is assumed small compared to the flow on the right (in a frame of refer- 
ence travelling with the phase velocity). Across the boundary of separation, both 
normal and tangential stresses are balanced, the tangential stresses on the left 
being given by a constant coefficient C times the square of the velocity on the 
right. At the free surface, both components of stress vanish. Under these con- 
ditions it is shown that a local two-dimensional solution does exist. Moreover 
it has the remarkable property that the inclination of the free surface on the two 
sides of the discontinuity depends only upon C, and is independent of both N and 
g. The angle of elevation on the left is shown to lie between 10' 54' and 30"; the 
angle of depression on the right is between 10" 54' and zero. Various special 
cases are discussed in Q 4. 

In 5 5 we discuss the effect of a possible difference in density on the two sides of 
the interface, caused by the entrainment of air at  the point of separation. The 
flows described above are generalized so as to include an arbitrary ratio of the 
densities, and the effect on the inclination of the free surface is determined. 

A comparison with some observations of the flow in hydraulic jumps is made 
in56. 

In the discussion in $ 7  it is suggested that a way may be opened up to treat 
the hitherto intractable problem of breaking waves, and more generally, of mixed 
turbulent and laminar free-surface flows. In such analyses the present local 
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solution may be an essential feature, representing the flow near the point of 
separation. 

2. A frictionless flow 
By choosing a reference frame moving with a suitable horizontal velocity we 

may reduce the motion to a steady flow. Let polar co-ordinates be taken as in 
figure 2 ,  with the origin at the point of discontinuity and with the line 8 = 0 
directed vertically downwards. Let the boundary of the fluid on the right be 
given by 8 = a, that on the left by 8 = - y, with a possible interface a t  8 = -p. 
Let p and g denote the pressure and gravitational acceleration, and p and p' 
the densities on the right and left respectively. 

Let us first suppose the flow to be irrotational. Then, in an incompressible fluid, 
we seek a stream function $ such that 

v2* = 0 
with boundary conditions 

(2.2) i * = o ,  p = o ,  when 8 = a ,  
9 = 0,  p continuous, when 6 = -p, 
* = o ,  p = o ,  when 8 = - y .  

We may, or may not, have a discontinuity in a$/a8 at 8 = - p. Following Stokes 
(1 880) we try 

This satisfies the first condition at  the surface 8 = a. To satisfy the second con- 
dion we note that in steady frictionless flow 

$ = Arnsinn(8-a) ( - p  < 6 < a) .  (2.3) 

p1p - gr cos 8 + +q2 = constant 

by Bernoulli's theorem. Since from (2.3) 

( 2 . 5 )  

(2.6) 

q2 = n2A2r2n-2 

we have 

The vanishing of p on 8 = a then implies that 

p = p(gr cos 8 - in2A2r2n-2) + constant. 

n = B  2 ,  (2.7) 

(2.8) 

so that if A + 0,  then cosa > 0 ;  in other words, the streamlines must slope 
downwards from the origin. This is also clear from the fact that the velocity has 
to vanish at  the origin, and a particle on a surface of constant pressure can gain 
kinetic energy only by going downhill. 

If now we try to satisfy the free-surface conditions at 8 = - y by the expres- 
sion $ = Brnsinn(8+ y) ,  - y < 8 < -,8, we find, by a similar argument that 
either y < in, which is obviously impossible when 0 < a < in, or else B = 0, 
that is to say the fluid on the left is stationary. Then the free surface on the left 
is horizontal (y = &r). 

so that the angle between radial streamlines must be 120°, and further 

A2 = 8 g cos a, 
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Can we satisfy the boundary conditions on the interface 8 = -,8! On the left 
the pressure is simply the hydrostatic pressure p = p'g' cos ,8. On the right the 
pressure is given by equation (2.6), which, in view of (2.8), may be written as 

p = pgr(cos,8-cosa). (2.9) 

Equating p and p' on the two sides of 8 = -,8 we have 

p' cosp = p(C0sp- C O S d j ,  

(p-p')cosp =pcOS(g7T-p). 

(p-p')/p = +,/3tan/3-+ 

or, since a+/3 = @r, 

This leads immediately to 

(2.10) 

(2.11) 

(2.12) 

and hence tan ,8 = (3p - 2pr)/2/3p. (2.13) 

The two extreme cases are as follows. First, when p' = 0, then 

= j3 = +T, A = @. (2.14) 

This is the Stokes 120" angle (Stokes 1880). Secondly, when p' = p then 

a = l  2 ,  $=&, A = 0. (2.15) 

The free surface on the right is then horizontal and no flow takes place. Inter- 
mediate values of the density ratio p'lp give flows which have non-zero values of 
A and which are in effect generalizations of the Stokes 120" angle flow. All these 
have a discontinuity in velocity on the surface 8 = - p, and all have a horizontal 
free surface on the left. 

We remark that if a non-zero vorticity (without friction) is allowed in the 
flow on either side of the discontinuity, it will not affect the angle of the free sur- 
face. For $is then the sum of a harmonic function plus a solution $o of the equa- 

v2?+ho = -wo,  (2.16) tion 

where wo is the limiting vorticity near the corner. But since in radial co-ordinates 

(2.17) 

it  follows that the relevant solution of (2.16) will be of order wor2, which tends to 
zero with r more rapidly than the harmonic function (2.3). Hence the presence of 
vorticity may affect the curvature of the free surface near the crest, but not the 
limiting angle. For the Stokes 120" angle this was pointed out by Miche (1944). 

3. A turbulent flow 
The observation that the free surface generally slopes upwards to the left 

of the discontinuity means that the flow there must be effected either by frictional 
forces or by Reynolds stresses, for without these it would be impossible for a 
particle at the free surface to be brought to rest at the origin (see equation (2.4)). 

In  this section, therefore, we shall seek a solution representing laminar flow 
on the right but highly turbulent flow on the left (see figure 2). For simplicity we 
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FIQURE 3. The local flow in a frictionless fluid with different densities. 

shall first assume that the densities on the left and on the right are equal, i.e. 
p' = p. 

Most turbulent flows are difficult to represent satisfactorily, the present being 
no exception. Moreover there are some outstanding differences between this and 
other types of flow, in that the source of the turbulence may be largely external 
to the region considered-in a breaking wave, for example, most of the turbulence 
may originate nearer to the wave crest. Secondly, the mean flow near the stagna- 
tion point must be relatively small to an observer moving with the phase velo- 
city of the wave. 

These considerations lead us to suggest a very simple model as follows. Let us 
suppose that the ej are given in terms of the mean flow Ui by expressions analo- 
gous to those for ordinary viscous stresses, that is to say 

Here N is an eddy viscosity, which we shall a t  f ist  assume to be constant. The 
quantity P is analogous to (but not equal to) the pressurep. We assume also that 
the Reynolds stresses dominate the inertia terms in the equations for the mean 
motion. Then in the turbulent zone we have essentially a balance between Rey- 
nolds stresses and gravity. The equations for the stream function $ of the mean 
flow become, in rectangular co-ordinates, 

i 
1 aP a p a x -  - N a y  (V2i@, 

- -+g = -N- (V2$)  ax 
1 aP a 
P ay 

(y being directed vertically upwards). Cross-differentiation gives 

V4$ = 0 (3.3) 

( P / p + g y ) + i N V 2 $  (3.4) 

and we see also that P / p  +gy is the harmonic conjugate of NV2$, the expression 

being an analytic function of x + i y .  
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On 0 = - y we have the boundary conditions 
- 4 = 0) P,, = 0) Pro = 0, 

where now, in radial co-ordinates, 

(3.5) 

(see, for example, Lamb 1932, p. 579). 

laminar flow on the right, we shall assume that 
At the interface 0 = -/3, which separates the turbulent flow on the left from the 

- 
II. = 0, Po0 = -p ,  p,, = Cpq2, (3.7) 

where p and q denote the pressure and speed in the laminar flow; that is, 

(3.8) I PIP = - gY - +q2, 
iq2  = gr cos a = gr cos (/3 - 87~). 

The second of the conditions (3.7) may therefore be written as 

P,OlP - gY = &I2. (3.9) 

The third of equations (3.7) is based on the assumptions that (1) the mean 
flow on the left is small compared with that on the right, and (2) there is a small 
entrainment of fluid from the laminar flow into the turbulent flow. If we define 
an entrainment constant e by 

(3.10) 
normal velocity of laminar flow across boundary 

relative tangential velocity of laminar and mean turbulent flow 
e =  

then conservation of momentum tangential to the boundary suggests that 

C + B. (3.11) 

In  a recent review Turner (1969) has quoted evidence that, at the boundary of 
a square jet, e is commonly of order 0.08. Hence we expect C to be of this order 
also. 

It is remarkable that the above equations (2.1) and (3.3), with the boundary 
conditions (2.2), (3.5), (3.7) and (3.9), admit a simple exact solution. Let us 
take 

4 = Er3sin3(0+y)+Irr3sin(8+y), (3.12) 
- 

where E and Ir are constants to be determined. Using (2.17) we have 

V2$ = 8Fr sin (8 + y) ,  (3.13) 

which is a harmonic function, so (3.3) is satisfied. Moreover from (3.4) it follows 
that 

P/p  c gy = 8NFr cos (8 + y) .  (3.14) 

Since 3 is an odd function of 8 $. y we see that the two boundary conditions $ = 0 
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= 0 on 8 + y = 0 are automatically satisfied. I n  general we have from (3.6) and - 
and (3.12) 

This obviously vanishes when 8+ y = 0. We have also 

P,e/p = -Nr[l2Esin 3(8+ y )  + 4Fsin (8+y) ] .  

Pee/p - gy = - 2Nr[6E cos (8 + y )  + 2 F  cos (8 + y ) ]  - (P/p + gy) 

or using (3.14) 

The condition that Pee should vanish on 8 = - y now yields 

Pee/p - gy = - 12Nr[E cos 3( 8 + y ) + P cos (8 + y)] .  

E + F  = -(g/l2N)cosy 

and the three conditions on 8 = -p  yield respectively 

1 Esin36+FsinS = 0, 
E C O S ~ ~ + F C O S S  = -Q, 
E sin 36 + +F sin 6 = - 2GQ, 

s = y - p  where we have written 

(which is the vertex angle of the turbulent 'wedge') and 

From the first and third of equations (2.19) it follows that 

F = 3CQ/sin 6 E = - 3CQ/sin 36, 

and so on substituting in the second of (3.19) we find, if Q $: 0, 

cot 36 - cot 6 = 1/3c. 

Similarly on substituting in (3.18) and using (3.21) we find 

I cosy 
3G cos(&-y++)' 

cosec 36- cosec 6 = - 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

Equations (3.23) and (3.24) constitute the solution to the problem. Given the 
drag coefficient C we may first use (3.23) to determine 6 and then use (3.24) to 
determine y and hence all the other parameters of the flow. The pattern of the 
streamlines is independent of both N and g. 

4. Discussion of the solution 
From (3.23) we have 

1 -sin26 - -2cos6 
3C - sin 36sin 6 - sin 36 ' 
_ -  (4.1) 

and so C = - & sin 36sec 6. (4.2) 

This function is shown in figure 3. I n  the range 0 < 6 < +v, it is negative and has a 
minimum equal to - 0- 196 where 

cos 26 = &(J3- l ) ,  6 = 34" 16'. (4.3) 
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FIGURE 3. Graph of the functionf( 8)  = - Q sin 38 sec 6, giving the drag coefficient C as a 
function of the angle 6 at the apex of the turbulent wedge. 

FIGURE 4. The angles of inclination a‘, p’ and y’, and the angle 6’ of the discontinuity in 
slope a t  the separation point, shown as functions of the drag coefficient C. 
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Since C is negative, this range 0 < 6 < Qn corresponds to upwards flow along the 
interface. 

When, on the other hand, in < 6 < in, C must be positive. Indeed, as S + +n 
so C + co. But since in practice C is probably small, only those values of 6 close 
to in axe of interest. In this neighbourhood we have 

C d - & r = S ' ,  (4.4) 

say. It will be noted that S' is just equal to the discontinuity in the inclination of 
the free surface at  r = 0. 

Beyond the point S = in, the roots of (4.2) do not yield physical solutions, since 
they imply (as will be seen) that a > in. 

From (3.23) and (3.24) we have, on eliminating C, the relation 

cot 3s- cot s 
cosec 3s- cosec S - 

- cos (@T- y + 6)  
cosy (4.5) 

relating 6 and y. Manipulation of both sides yields 

COB S/cos 2s = cos (6 + gn) + sin (S + @r) tan y 

tan y = tan 2s + 3!2 sec 26. 

(4.6) 

and hence (4.7) 

This simple relation enables us at  once to calculate y in terms of 6, and hence also 
p and a. In  figure 4 we have plotted, besides S', the functions 

a' = In-a,  2 p ' =  tn-p, y' = y-Qn.  (4-8) 

The angles a' and y' represent the inclination of the free surface to the horizontal 
on the right and left respectively, and p' represents the inclination of the interface. 
From figure 4 it will be seen that as C increases from 0 to co, so 6' increases from 
0" to 30". At the same time a' decreases from 10" 54' to 0"; p' increases from 
49" 6' to 60°, and y' increases from 10' 54' to 30". We shall now discuss some 
special cases. 

We take f i s t  some non-negative values of C (figures 5a, b, c). A typical 
flow is when S = 75" (figure 5 b ) .  The flow is in the direction we might expect 
intuitively. The free surfaces on the left and right are inclined a t  angles 
of 21" (upwards) and 6" (downwards) respectively. As the drag coefficient is 
increased, so the flow approaches the configuration shown in figure 6 (c). Although 
C + co, the flow on the left remains bounded, since at the same time q2 + 0 
in such a way as to make Cpq2fhite. In the limit, (3.22) shows that E = F = 3C&, 
so that on the left 

This represents a flow that is concentrated mainly in the neighbourhood of the 
interface. 

As C moves in the opposite direction we pass through the limiting case C = 0, 
6 = 60°, shown in figure 6(a). Paradoxically, the free surface is not horizontal 
in this case. The reason is that, although the tangential stress at  the interface 
vanishes, the presence of the turbulence results in an increase of the normal 
stress Pse (hence a reduction in P) whose effect must be counterbalanced by a 

- 
@cc r3sin2(0+y)sin(8+y). (4.9) 
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FIGURE 5. Plow configurations when C > 0:  (a) 6 = BO", 
(b )  6 = 750, (c) 6 = goo. 

FIGURE 6. Flow configurations when C = 0: (a)  8 < 1, ( b )  6 = 1 5 O ,  
(c) S = 30", (d )  8 = 60". 
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reduction in the pressure p on the right of the interface. Hence the flow on the 
right is similar to a special case of the frictionless flow described in Q 2. The fluid 
on the left, however, is not stationary. Taking the limit of equations (3.22) as 
C -+ 0 we find E $: 0, F -+ 0 and hence 

- 
3.c r3 sin 3(8 + y) ,  (4.10) 

which represents a simple, irrotational flow in a 60" corner. By the symmetry of 
the flow it can be seen that this flow ensures the vanishing of pTB both on 8 = - /3 
and8 = -7. 

Some solutions representing negative values of C are shown in figure 6. When 
6 < 1 (figure 6a)  the turbulent zone isvery thin and the laminar flow approximates 
that in a Stokes 120" angle C is then smal1.t As 6 increases so does JCI until the 
maximum a t  6 = 34" 16'. When 6 = 45" the free surface on the left is horizontal, 
the mean flow being given by E = - F = - 3(2)Q CQ, and so 

- 
@cc r3 sin 2(8 + y )  cos (8 + 7). (4.11) 

Finally when S = 60" we have the same flow as in figure 5 (a) except that the direc- 
tion is reversed. 

We note that in deriving (3.22) and (3.23) it was necessary to divide by Q, 
so that the solution Q = 0, hence E = F = 0 was excluded. This is the trivial solu- 
tion in which the fluid is at rest on both sides of the interface. But we see that this 
solution is not continuous with either of the ranges examined above. This remark 
serves to emphasize the nonlinearity of the present flows. To establish them we 
must pass through some configuration other than a state of rest. Once established, 
however, observation suggests that they are at  least securlarly stable. 

5. Turbulent flow with differing densities 
Any entrainment of air at the point of separation may be expected to reduce 

the effective density of the fluid above the interface; that is, in the turbulent 
region. The method of 5 5 can also be applied to the problem when the density p' 
of the turbulent fluid on the left differs from the density p in the laminar region 
on the right. The drag coefficient C may be expected to depend upon the relative 
density difference 7 E ( p  -p ' ) /p .  Ellison & Turner (1959) found that in an almost- 
parallel flow the entrainment constant 6 was a function of the Richardson number 
Ri = qgL/ U2,  where L and U are typical length and velocity scales. In the present 
situation the flows are assumed to be self-similar, and all geometrical length 
scales are proportional to the radial distance r. Taking U = q as a typical velo- 
city, we see that Ricc 7gr/q2, which is independent of r. Hence we may be justified 
in assuming C to be a constant independent of r ,  though depending in some way 
on the relative density difference 7, and the geometry of the flow. 

Following the method of Q 3 we find in place of (3.22) 

3CQ P 3CQ P E = _ _ _ _  F =  -- 
sin 38 p' ' sin 6 p' 

7 It is possible that this flow approximates the flow near the crest of a spilling breaker. 
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C 

FIGURE 7. The angle IS shown as a function of C ,  for given values of the density ratio 
p'lp. The dashed line corresponds to p'/p = 0.5. The maximum value of C on this curve is 
indicated by a solid circle (0). 

and in place of (3.23) and (3.24) 

(cot36-cot6) = - l ( 1-7- cosq,\ 
3 c  cos a 
1 

(cosec 36 - cosec 6) = 3c (1 - 7) - 
cos a' 

where ~ = ( p - p ' ) / p = i - R ,  R = p ' / p .  

By eliminating a and C respectively from equations (5.2) 
15.3) 

(5.4) 

(5 .5)  

(1 - 7) sin 36 [sin (6- in) + 7 sin 61 C=-- 
6 (1 - 7) cos &sin (6- Qn) 

(sin 26+1/3) sin (6- Q7f) 4- 27 COS 6sin26 
cos 2S[Sin (6- in) + 7 sin61 

tany = ' and 

which are obviously generalizations of (4.2) and (4.7). For any given value of 7 
we now have C and y in terms of 6, so that a, ,8, y and 6 may all be expressed as 
functions of C. 

In  figure 7,6 is shown as a function of m over the whole possible range 

0 < 6 < 120". 
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FIGURE 8. Values of a' and y' for the quasi-static flows (8' < 0), giving the inclinationof 
the free surface in the laminar and the turbulent zones respectively. 

In  fact we are interested only in positive values of C, and this limits the relevant 
values of S to two ranges, (1) when 30" < 6 < 60" and ( 2 )  when 60" < 6 < 120". 

In  range 1, C can tend to zero for values of 6 given by 

sin(S-&n)+qsin6= 0. (5.6) 

At such values both E and P vanish, by (5. l ) ,  so that the fluid on the left is static. 
Prom (5.5) we may verify that in this case y = go", hence 6 = 90"-,8 and (5.6) 
reduces to (2.11). Thus in the limit as C -+ 0 we recover the flows described in 3 2 .  
As C is increased, keeping S within the range 1, we obtain a set of flows which are 
generalizations of the flows in 3 2.  The tangential stress at  the interface no longer 
vanishes. It can be seen from figure 7 that these more general flows are continuous 
with those corresponding to points on the line 6 = 60" (8' = 0)  as R + 1 (7 --f 0 )  
which correspond to a state of rest in both the laminar and turbulent zones. 
For this reason we may call the flows in range I 'quasi-static' flows. For 
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such flows we see that 6' ( = 6- 60") is negative, so that the free surface is 
convex. 

The values of a' and y' corresponding to the quasi-static flows are shown in 
figures 8 (a)  and ( b ) .  It wilI be seen that as R is diminished from unity, keeping C 
constant, so the angle of depression a' on the right generally increases, as we 
might expect, though the behaviour of y' is more complicated. In  the limit 
as R-tO and C + 0, we see that a' --f 30", so that the flow on the right is the 
Stokes 120" angle flow, as we should expect. However, the flow on the left 
depends on the way in which C and R each tend to  zero. Such non-uniform 
convergence is to be expected, since the ratio of the tangential stress to normal 
stress in the turbulent fluid depends on the ratio Cplp'; that is, CIR. 

Consider now the flows in range 2 (60" < 6 < 120"). From figure 9 it can be seen 
that these are continuous with the flows described in $5 3 and 4. We shall call the 
flows in this range 'dynamic'. For dynamic flows C may not tend to 0 unless 
either 6 + 60" or 120", or unless R + 0. There is a critical ratio of the densities: 
R = 0.5. When R > 0-5, then C becomes arbitrarily large as S approaches a 
certain value. On the other hand, when R < 0.5, C cannot exceed a certain maxi- 
mum value, depending on R. 

When R = 0-5 the maximum value of C occurs a t  6 = 1.1 6" 30', which is inside 
the range 2. Hence there exists a small range of the density ratio, say 

0.5 < R < R,, 

for which C has two stationary values. Thus we see that when 0 < R < 0.5 there 
are generally two dynamic flows or none, for a given value of C; when 0.5 < R < R, 
there are either three dynamic flows or one; and when R, < R < 1 there is always 
just one flow for a given value of C. 

An approximate method (not described here) shows that the value of R, is 
roughly *(I +6), where 5 = (2/135)2 = 0.00022. Hence R, + 0-50011. By direct 
computation using (5.4) it was found that in fact R, = 0.500117. . . . The corre- 
sponding values of a', ,8', y' and 6' are given by 

a' = 3" 23', 
7' = 1" 54', 

/3' = 56" 37', 
6' = 57" 42', (5.7) 

and C has the value 0.26146. 
The general values of a' and y' for the dynamic flows are shown in figures 

9 ( a )  and (b) .  At moderate values of C it appears that, as R is diminished from 
unity, so a' and y' both initially increase. For example, if C is of order 0.1, then 
a change of 10 yo in the ratio R, from 1.0 to  0.9, will increase a' by about 5" and 
will increase y' by about 8". At very low densities (small values of R) if C also 
is sufficiently small, a' must tend to 30", so that we retrieve the Stokes 120" 
angle. At the same time y' lies somewhere between 30" and 60". 

6. Comparison with observations 
There appear to be few existing measurements with which the present model 

can be directly compared. Hydraulic jumps in open channels have been fairly 
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FIGURE 9. Values of (a) u' and (6) y' for the dynamic flows (8' > 0), giving the inclination 
of the free surface in the laminar and the turbulent zones respectively. 

extensiveJ.y studied (for a review see Rajaratnam 1967). In these, however, the 
flow is strongly influenced by the presence of the bottom, especially a t  high 
Froude numbers. Nevertheless, some comparisons may be made. Bakhmeteff & 
Matzke (1936) showed that the profile of the hump was dependent on the Froude 
number F1 = U,/(gh,)h, where U, and h, denote the mean velocity and water 
depth below the jump. Prom figure 2 of Rajaratnam (1968), based on their data, 

10 F L M  57 
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F ,  tan y' Y' 
1.98 0.59 29" 
2-92 0.44 24" 
4.09 0.39 21" 
5.53 0.26 15O 
8.63 0.23 13" 

TABLE 1. Inclination of the free surface above the toe of a hydraulic jump 
in open channel flow. 

the inclination of the free surface just above the toe of the jump is given by 
table 1. Comparison with figure 9 ( b )  shows that these inclinations, in the range 
13-29", might be expected on the basis of an entrainment coefficient C of order 
0.1 and a density ratio lying in the range 0.7 < p ' /p  < 1.0. 

Air entrainment in hydraulic jumps has been studied by Rajaratnam (1962). 
The volume concentration c, as defined by him, is approximately equal to 1 - p ' /p .  
Over a comparable range of Froude numbers (2.42 < 6 8.12) he found that, 
for points near the upper surface, c lay generally between 0.5 and 0.20. No mea- 
surements very close to the toe of the jump are reported, but the trend of the 
observations suggested that the air concentration there was even higher. Thus, 
the density ratio p ' /p  was certainly sometimes as low as 0.8 and may well have 
been less. The range of densities inferred earlier is therefore reasonable. 

There appear to be no careful observations of the lower interface of the air- 
entrained flow. Rajaratnam (1967, p. 218) states that the angle of depression of 
the entrained bubbles increases with the Froude number. This may be due 
partly to the increase in the mean flow velocity, relative to the rate at  which 
bubbles rise to the surface. Generally, interfacial angles indicated by air-bubble 
entrainment will tend to underestimate the actual angle of depression. Again, 
the presence of the bottom will tend to diminish the apparent angle of depression, 
except perhaps very close to the toe, and to reduce the range of validity of the 
local solution. 

Immediately upstream of the toe it has been generally assumed, on the basis 
of nonlinear hydrostatic theory, that the free surface is exactly horizontal. 
However, in the neighbourhood of a discontinuity of surface elevation the hydro- 
static assumption does not necessarily apply. Figure 9 (a)  suggests that close to 
the toe the free surface will be inclined to the horizontal at an angle a' lying 
between about 10" and 20". Such small angles may have been overlooked. 

7. Discussion and applications 

In  the foregoing model it has been assumed for simplicity that both N and C 
are constant. The fact that the resulting flow field is independent of the value of 
N suggests that the velocity of the model does not depend critically on the con- 
stancy of N .  Nevertheless we may note that comparable analytic solutions could 
be obtained if N were assumed proportional to a power of the radial distance 
r ;  for example, if Ncc @r3. 
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It must be emphasized that the representation of the turbulence by an eddy 
viscosity is necessarily an analytical device, made necessary by the complication 
of the actual flow. The chief significance of the present model may be to suggest 
a way in which the hitherto intractable problem of white-caps may be made 
amenable to analysis, namely by treating certain regions of the flow as laminar 
and others as turbulent, the turbulence being represented by an eddy viscosity, 
uniform or otherwise. 

For example, it may well be possible to construct a solution for a spilling 
breaker in which the white-cap is represented by a viscous zone near the wave 
crest, the eddy viscosity diminishing towards therear, as in figure 1. Becauseof the 
dissipation of energy it would be necessary, in an exactly steady state, to assume 
that energy was continually being supplied by normal or tangential stresses a t  
the free surface. 

In  deep water the waves may be supposed to move forwards through a wave 
group, thus changing slowly in amplitude. Such a solution might be considered 
as quasi-stationary. If, on the other hand, the waves are in shallow water 
approaching a gently sloping beach, the energy is supplied by the incoming 
swell. 

I am indebted to Dr J. S. Turner for comments on a first draft of this paper, and 
to Mr I. D. James for checking the algebra in $5, 
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